首页 / 师资队伍 / 教师信息 / 工程抗震研究中心副教授 / 正文

范高

发布日期:2025-03-18   浏览量:


职称:副教授

研究领域:结构健康监测、桥梁智慧运维、计算机视觉、深度学习、无人机

办公地点:抗震大楼1605

电子邮箱:gao.fan@gzhu.edu.cn

个人简介

广州大学工程抗震研究中心副教授,硕士研究生导师。2020年博士毕业于澳大利亚科廷大学。长期致力于智能基础设施运维前沿研究,聚焦深度学习赋能的结构健康监测与桥梁检测数智化转型,相关成果以第一或通讯作者发表高水平SCI论文近二十篇。主持国家自然科学基金青年科学基金一项,广州市基础与应用基础研究一项。指导学生获第二届结构健康监测国际竞赛(IC-SHM, 2021)荣誉奖、第三届结构健康监测国际竞赛(IC-SHM, 2022)二等奖。欢迎各位热爱学术,对前沿科学感兴趣的同学加入。

教育背景

2012.02-2016.01   科廷大学   土木与建筑工程   学士

2016.11-2020.09   科廷大学   土木工程         博士

职业经历

2020.11-2023.04   广州大学土木与交通工程学院   讲师

2023.04-2024.07   广州大学工程抗震研究中心   讲师

2024.07-至今      广州大学工程抗震研究中心   副教授

教授课程

《画法几何与工程制图》、《工程技术经济》、《建筑结构试验与检测》、《土木工程专业英语》、《土木工程发展前沿与系列讲座》

科研项目

[1] 广州市基础研究计划基础与应用基础研究项目2022-2024,主持

[2] 国家自然科学基金青年科学基金项目,2021-2024,主持

研究成果

[1] Shihong Chen, Gao Fan*, Jun Li*, Hong Hao. Automatic complex concrete crack detection and quantification based on point clouds and deep learning. Engineering Structures, 2025, 327: 119635.

[2] Gao Fan, Deyun Zhang, Manman Hu, Jun Li*, Hong Hao. Systematical vibration data recovery based on novel convolutional self-attention networks. Journal of Civil Structural Health Monitoring. 2024, 1-21.

[3] Linjie Huang, Gao Fan*, Jun Li*, Hong Hao. Deep learning for automated multiclass surface damage detection in bridge inspections. Automation in Construction. 2024, 166: 105601.

[4] Qiqi Zeng, Gao Fan*, Dayang Wang*, Weijun Tao, Airong Liu. A systematic approach to pixel-level crack detection and localization with a feature fusion attention network and 3D reconstruction. Engineering Structures. 2024. 300: 117219.

[5] Shihong Chen, Gao Fan*, Jun Li*. Improving completeness and accuracy of 3D point clouds by using deep learning for applications of digital twins to civil structures. Advanced Engineering Informatics. 2023. 58: 102196.

[6] Gao Fan, Zhengyan He, Jun Li*. Structural dynamic response reconstruction using self-attention enhanced generative adversarial networks. Engineering Structures. 2023, 276: 115334.

[7] Jun Li, Wupeng Chen, Gao Fan*. Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks. Smart Structures and Systems, 2022, 30(6): 613-626.

[8] Jun Li, Zhengyan He, Gao Fan*. Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning, Smart Structures and Systems, 2022, 30(6): 687-701.

[9] Gao Fan, Jun Li*, Hong Hao, Yu Xin. Data driven structural dynamic response reconstruction using segment based generative adversarial networks, Engineering Structures, 2021, 234: 111970.

[10] Gao Fan, Jun Li*, Hong Hao. Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks. Structural Health Monitoring. 2021, 20(4): 1373-1391.

[11] Gao Fan, Jun Li, Hong Hao*. Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement. 2020, 157: 107651.

[12] Gao Fan, Jun Li*, Hong Hao. Lost data recovery for structural health monitoring based on convolutional neural networks. Structural Control and Health Monitoring. 2019, 26(10): e2433.

[13] Gao Fan, Jun Li*; Hong Hao. Improved automated operational modal identification of structures based on clustering, Structural Control and Health Monitoring. 2019, 26(12): e2450.

[14] Jun Li*, Hong Hao, Gao Fan, Pinghe Ni, Xiangyu Wang, Changzhi Wu, Jae-Myung Lee, Kwang-Hyo Jung, Numerical and experimental verifications on damping identification with model updating and vibration monitoring data, Smart Structures and Systems, 20(2): 127-137, 2017.

[15] Wenhao Zheng, Jun Li*, Hong Hao, Gao Fan, Missing data imputation for structural health monitoring using unsupervised domain adaptation and pretraining techniques, 382: 119694, 2025.




下一条:方壮城